Coop UQAM | Coopsco

Créer mon profil | Mot de passe oublié?

Magasiner par secteur

Matériel obligatoire et recommandé

Voir les groupes
Devenir membre

Nos partenaires

UQAM
ESG UQAM
Réseau ESG UQAM
Bureau des diplômés
Centre sportif
Citadins
Service de la formation universitaire en région
Université à distance
Société de développement des entreprises culturelles - SODEC
L'institut du tourisme et de l'hotellerie - ITHQ
Pour le rayonnement du livre canadien
Presses de l'Université du Québec
Auteurs UQAM : Campagne permanente de promotion des auteures et auteurs UQAM
Fondation de l'UQAM
Écoles d'été en langues de l'UQAM
Canal savoir
L'économie sociale, j'achète
Millénium Micro



Recherche avancée...

Modern Optimization Methods


Éditeur : EDP Sciences
ISBN numérique PDF: 9782759831753
Parution : 2023
Catégorisation : Livres numériques / Autre / Autre / Autre.

Formats disponibles

Format Qté. disp. Prix* Commander
Numérique PDF
Protection filigrane***
Illimité Prix : 114,99 $
x

*Les prix sont en dollars canadien. Taxes et frais de livraison en sus.
***Ce produit est protégé en vertu des droits d'auteurs.




Description

With the fast development of big data and artificial intelligence, a natural question is how do we analyze data more efficiently? One of the efficient ways is to use optimization. What is optimization? Optimization exists everywhere. People optimize. As long as you have choices, you do optimization. Optimization is the key of operations research. This book introduces the basic definitions and theory about numerical optimization, including optimality conditions for unconstrained and constrained optimization, as well as algorithms for unconstrained and constrained problems. Moreover, it also includes the nonsmooth Newton’s method, which plays an important role in large-scale numerical optimization. Finally, based on the author’s research experiences, several latest applications about optimization are introduced, including optimization algorithms for hypergraph matching, support vector machine and bilevel optimization approach for hyperparameter selection in machine learning. With these optimization tools, one can deal with data more efficiently.