Coop UQAM | Coopsco

Créer mon profil | Mot de passe oublié?

Magasiner par secteur

Matériel obligatoire et recommandé

Voir les groupes
Devenir membre

Nos partenaires

UQAM
ESG UQAM
Réseau ESG UQAM
Bureau des diplômés
Centre sportif
Citadins
Service de la formation universitaire en région
Université à distance
Société de développement des entreprises culturelles - SODEC
L'institut du tourisme et de l'hotellerie - ITHQ
Pour le rayonnement du livre canadien
Presses de l'Université du Québec
Auteurs UQAM : Campagne permanente de promotion des auteures et auteurs UQAM
Fondation de l'UQAM
Écoles d'été en langues de l'UQAM
Canal savoir
L'économie sociale, j'achète
Millénium Micro



Recherche avancée...

Intelligence artificielle et modélisation du risque de crédit


Éditeur : Harmattan
ISBN numérique PDF: 9782140311758
Parution : 2023
Catégorisation : Livres numériques / Autre / Autre / Autre.

Formats disponibles

Format Qté. disp. Prix* Commander
Numérique PDF
Protection filigrane***
Illimité Prix : 33,57 $
x

*Les prix sont en dollars canadien. Taxes et frais de livraison en sus.
***Ce produit est protégé en vertu des droits d'auteurs.




Description

Le risque de crédit est au cœur des préoccupations des emprunteurs. Dans une économie imprévisible et incertaine, les individus, les ménages, les entreprises, mais aussi les États sont soumis au stress du taux d'intérêt, des traites à rembourser… de la charge de la dette. L'intelligence artificielle peut-elle rendre prévisible l'inconstant, l'aléatoire, l'improbable ? L'auteur étudie, évalue et éclaire la performance de plusieurs méthodes basées sur l'intelligence artificielle dans la modélisation du risque de crédit. Pour ce faire, une variété de méthodes classiques et modernes ont été comparées en termes de capacité à prédire la solvabilité des clients bancaires. Parmi ces méthodes figurent le K-plus proches voisins (KNN), l'Arbre de Décision (DT), la Régression logistique (RL), le Réseau de Neurones artificiels (ANN), les machines à vecteurs de support (SVM) et Naïve Bayes (NB). À l'issue de cette étude, les performances de chaque modèle ont été comparées en utilisant des métriques d'évaluation telles que la courbe ROC, le taux AUC, l'Accuracy, la précision et d'autres ratios d'erreur issus de la matrice de confusion.