Coop UQAM | Coopsco

Créer mon profil | Mot de passe oublié?

Magasiner par secteur

Matériel obligatoire et recommandé

Voir les groupes
Devenir membre

Nos partenaires

UQAM
ESG UQAM
Réseau ESG UQAM
Bureau des diplômés
Centre sportif
Citadins
Service de la formation universitaire en région
Université à distance
Société de développement des entreprises culturelles - SODEC
L'institut du tourisme et de l'hotellerie - ITHQ
Pour le rayonnement du livre canadien
Presses de l'Université du Québec
Auteurs UQAM : Campagne permanente de promotion des auteures et auteurs UQAM
Fondation de l'UQAM
Écoles d'été en langues de l'UQAM
Canal savoir
L'économie sociale, j'achète
Millénium Micro



Recherche avancée...

Resolution of curve and surface singularities

Kiyek, k


Éditeur : KLUWER BOSTON
ISBN papier: 1402020287
Parution : 2004
Code produit : 1135031
Catégorisation : Livres / Science / Mathématique / Mathématiques

Formats disponibles

Format Qté. disp. Prix* Commander
Livre papier En rupture de stock** Prix membre : 163,35 $
Prix non-membre : 171,95 $
x

*Les prix sont en dollars canadien. Taxes et frais de livraison en sus.
**Ce produits est en rupture de stock mais sera expédié dès qu'ils sera disponible.




Description

This book covers the beautiful theory of resolutions of surface singularities in characteristic zero. The primary goal is to present in detail, and for the first time in one volume, two proofs for the existence of such resolutions. One construction was introduced by H.W.E. Jung, and another is due to O. Zariski. Jung's approach uses quasi-ordinary singularities and an explicit study of specific surfaces in affine three-space. In particular, a new proof of the Jung-Abhyankar theorem is given via ramification theory. Zariski's method, as presented, involves repeated normalisation and blowing up points. It also uses the uniformization of zero-dimensional valuations of function fields in two variables, for which a complete proof is given. Despite the intention to serve graduate students and researchers of Commutative Algebra and Algebraic Geometry, a basic knowledge on these topics is necessary only. This is obtained by a thorough introduction of the needed algebraic tools in the two appendices.