Coop UQAM | Coopsco

Créer mon profil | Mot de passe oublié?

Magasiner par secteur

Matériel obligatoire et recommandé

Voir les groupes
Devenir membre

Nos partenaires

UQAM
ESG UQAM
Réseau ESG UQAM
Bureau des diplômés
Centre sportif
Citadins
Service de la formation universitaire en région
Université à distance
Société de développement des entreprises culturelles - SODEC
L'institut du tourisme et de l'hotellerie - ITHQ
Pour le rayonnement du livre canadien
Presses de l'Université du Québec
Auteurs UQAM : Campagne permanente de promotion des auteures et auteurs UQAM
Fondation de l'UQAM
Écoles d'été en langues de l'UQAM
Canal savoir
L'économie sociale, j'achète
Millénium Micro



Recherche avancée...

Theories, Sites, Toposes: Relating and Studying Mathematical Theories

Theories, Sites, Toposes: Relating and Studying Mathematical Theories

Caramello, Olivia


Éditeur : OXFORD UNIVERSITY PRESS
ISBN papier: 9780198758914
Parution : 2018
Code produit : 1394397
Catégorisation : Livres / Science / Mathématique / Mathématiques

Formats disponibles

Format Qté. disp. Prix* Commander
Livre papier En rupture de stock** Prix membre : 129,68 $
Prix non-membre : 136,50 $
x

*Les prix sont en dollars canadien. Taxes et frais de livraison en sus.
**Ce produits est en rupture de stock mais sera expédié dès qu'ils sera disponible.




Description

According to Grothendieck, the notion of topos is "the bed or deep river where come to be married geometry and algebra, topology and arithmetic, mathematical logic and category theory, the world of the continuous and that of discontinuous or discrete structures". It is what he had "conceived of most broad to perceive with finesse, by the same language rich of geometric resonances, an "essence" which is common to situations most distant from each other, coming from one region or another of the vast universe of mathematical things". The aim of this book is to present a theory and a number of techniques which allow to give substance to Grothendieck's vision by building on the notion of classifying topos educed by categorical logicians. Mathematical theories (formalized within first-order logic) give rise to geometric objects called sites; the passage from sites to their associated toposes embodies the passage from the logical presentation of theories to their mathematical content, i.e. from syntax to semantics. The essential ambiguity given by the fact that any topos is associated in general with an infinite number of theories or different sites allows to study the relations between different theories, and hence the theories themselves, by using toposes as 'bridges' between these different presentations. The expression or calculation of invariants of toposes in terms of the theories associated with them or their sites of definition generates a great number of results and notions varying according to the different types of presentation, giving rise to a veritable mathematical morphogenesis.