Coop UQAM | Coopsco

Créer mon profil | Mot de passe oublié?

Magasiner par secteur

Matériel obligatoire et recommandé

Voir les groupes
Devenir membre

Nos partenaires

UQAM
ESG UQAM
Réseau ESG UQAM
Bureau des diplômés
Centre sportif
Citadins
Service de la formation universitaire en région
Université à distance
Société de développement des entreprises culturelles - SODEC
L'institut du tourisme et de l'hotellerie - ITHQ
Pour le rayonnement du livre canadien
Presses de l'Université du Québec
Auteurs UQAM : Campagne permanente de promotion des auteures et auteurs UQAM
Fondation de l'UQAM
Écoles d'été en langues de l'UQAM
Canal savoir
L'économie sociale, j'achète
Millénium Micro



Recherche avancée...

Introductory Time Series with R

Cowpertwait, Paul / Metcalfe,


Éditeur : SPRINGER NATURE
ISBN papier: 9780387886978
Parution : 2009
Code produit : 1136453
Catégorisation : Livres / Science / Mathématique / Actuariat et mathématiques financières

Formats disponibles

Format Qté. disp. Prix* Commander
Livre papier En rupture de stock** Prix membre : 61,70 $
Prix non-membre : 64,95 $
x

*Les prix sont en dollars canadien. Taxes et frais de livraison en sus.
**Ce produits est en rupture de stock mais sera expédié dès qu'ils sera disponible.




Description

Yearly global mean temperature and ocean levels, daily share prices, and the signals transmitted back to Earth by the Voyager space craft are all examples of sequential observations over time known as time series. This book gives you a step-by-step introduction to analysing time series using the open source software R. Each time series model is motivated with practical applications, and is defined in mathematical notation. Once the model has been introduced it is used to generate synthetic data, using R code, and these generated data are then used to estimate its parameters. This sequence enhances understanding of both the time series model and the R function used to fit the model to data. Finally, the model is used to analyse observed data taken from a practical application. By using R, the whole procedure can be reproduced by the reader. All the data sets used in the book are available on the website http://www.massey.ac.nz/~pscowper/ts. The book is written for undergraduate students of mathematics, economics, business and finance, geography, engineering and related disciplines, and postgraduate students who may need to analyse time series as part of their taught programme or their research.