Coop UQAM | Coopsco

Créer mon profil | Mot de passe oublié?

Magasiner par secteur

Matériel obligatoire et recommandé

Voir les groupes
Devenir membre

Nos partenaires

UQAM
ESG UQAM
Réseau ESG UQAM
Bureau des diplômés
Centre sportif
Citadins
Service de la formation universitaire en région
Université à distance
Société de développement des entreprises culturelles - SODEC
L'institut du tourisme et de l'hotellerie - ITHQ
Pour le rayonnement du livre canadien
Presses de l'Université du Québec
Auteurs UQAM : Campagne permanente de promotion des auteures et auteurs UQAM
Fondation de l'UQAM
Écoles d'été en langues de l'UQAM
Canal savoir
L'économie sociale, j'achète
Millénium Micro



Recherche avancée...

The Method of Fundamental Solutions: Theory and Applications


Éditeur : EDP Sciences
ISBN numérique PDF: 9782759831722
Parution : 2023
Catégorisation : Livres numériques / Autre / Autre / Autre.

Formats disponibles

Format Qté. disp. Prix* Commander
Numérique PDF
Protection filigrane***
Illimité Prix : 189,99 $
x

*Les prix sont en dollars canadien. Taxes et frais de livraison en sus.
***Ce produit est protégé en vertu des droits d'auteurs.




Description

The fundamental solutions (FS) satisfy the governing equations in a solution domain S, and then the numerical solutions can be found from the exterior and the interior boundary conditions on ?S. The resource nodes of FS are chosen outside S, distinctly from the case of the boundary element method (BEM). This method is called the method of fundamental solutions (MFS), which originated from Kupradze in 1963. The Laplace and the Helmholtz equations are studied in detail, and biharmonic equations and the Cauchy-Navier equation of linear elastostatics are also discussed. Moreover, better choices of source nodes are explored. The simplicity of numerical algorithms and high accuracy of numerical solutions are two remarkable advantages of the MFS. However, the ill-conditioning of the MFS is notorious, and the condition number (Cond) grows exponentially via the number of the unknowns used. In this book, the numerical algorithms are introduced and their characteristics are addressed. The main efforts are made to establish the theoretical analysis in errors and stability. The strict analysis (as well as choices of source nodes) in this book has provided the solid theoretical basis of the MFS, to grant it to become an effective and competent numerical method for partial differential equations (PDE). Based on some of our works published as journal papers, this book presents essential and important elements of the MFS. It is intended for researchers, graduated students, university students, computational experts, mathematicians and engineers.